

Belo Horizonte December 2014

Directed connected operators:

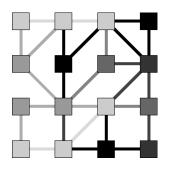
Asymmetric hierarchies for image filtering and segmentation

Benjamin.perret@esiee.fr

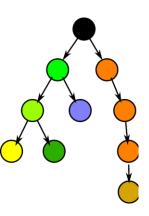
Pitch

Before

> Symmetric adjacency: undirected graph

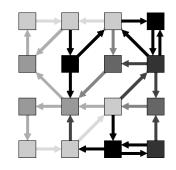


> Hierarchical representation: tree

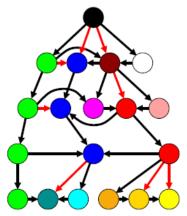


After

> Asymmetric adjacency: directed graph



> Hierarchical representation: acyclic graph



B. Perret, J. Cousty, O. Tankyevych, H. Talbot, and N. Passat. Directed connected operators: asymmetric hierarchies for image filtering and segmentation. IEEE TPAMI 2014, DOI: 10.1109/TPAMI.2014.2366145

Connected image processing

A simple paradigm:

Only one legal operation : remove connected components Don't move contours!

Efficient algorithms:

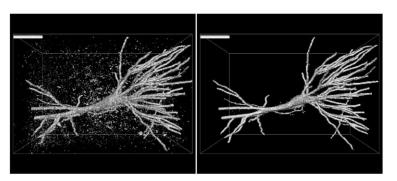
Mostly linear time & space complexity

Versatile framework:

Attribute/feature based reasoning

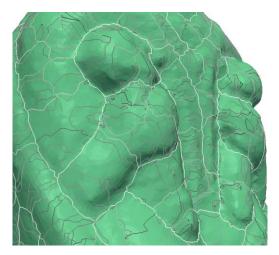
Filtering, segmentation, detection, characterization, vision...

Background



> 3D cube filtering : Ouzounis et al, PAMI 2007

Image simplification: Soille, PAMI 2008



> 3D mesh segmentation: Cousty et al, PAMI 2010



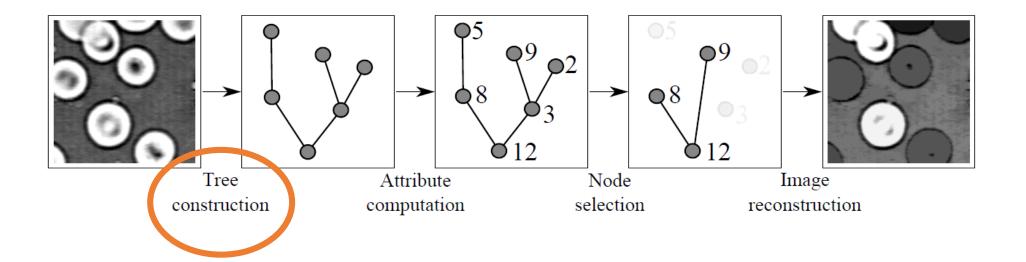
 Interactive segmentation: Passat et al, PR 2010

Degraded document images restoration: Perret et al, TIP 2012

Feature detection : Xu et al. TIP 2014

Connected image processing

General 4 steps procedure



Success of directed adjacency in other frameworks

Min-cuts: Boykov et al IJCV 2006 Random Walkers: Singaraju et al CVPR 2008 Shortest path forest: Miranda et al TIP 2014

Handling of naturally directed information: k-nearest neighbor Alleviate the linkage/chaining issue: *weak* connection Injection of a priori information: expert knowledge, learning

Increased complexity...

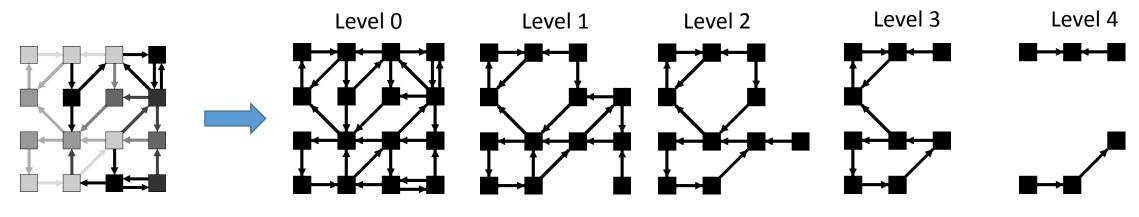
Directed graph

Let G = (V, A) be a directed graph:

- V is a finite set of points/vertices/nodes
- $A \subseteq V \times V\,$ is the set of arcs/edges

A node/edge weighted graph => a stack of graphs

Sequence of nested graphs

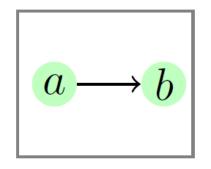


Node/edge weighted graph

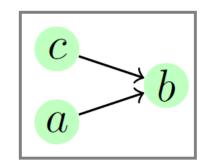
> Stack of graphs

Let $x \in V$, the Directed connected component (DCC) of base point x: The set of successors of x denoted $DCC_G(x)$

> A DCC may contain another DCC

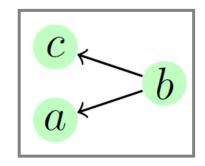


 $DCC_G(a) = \{a, b\}$ $DCC_G(b) = \{b\}$



 $DCC_G(a) = \{a, b\}$ $DCC_G(c) = \{c, b\}$ $DCC_G(b) = \{b\}$

Asymmetric behavior of the DCCs



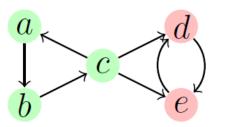
 $DCC_G(a) = \{a\}$ $DCC_G(c) = \{c\}$ $DCC_G(b) = \{a, b, c\}$

A set $X \subseteq V$ is **Strongly connected :** $\forall x, y \in X$

There is a path from x to y and from y to x in X

A **Strongly connected component (SCC)** is a strongly connected set of maximal extent

The SCC that contains the node x is denoted $SCC_G(x)$



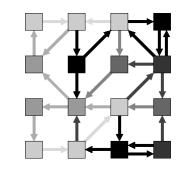
 $SCC_G(a) = SCC_G(b) = SCC_G(c) = \{a, b, c\}$ $SCC_G(d) = SCC_G(e) = \{d, e\}$

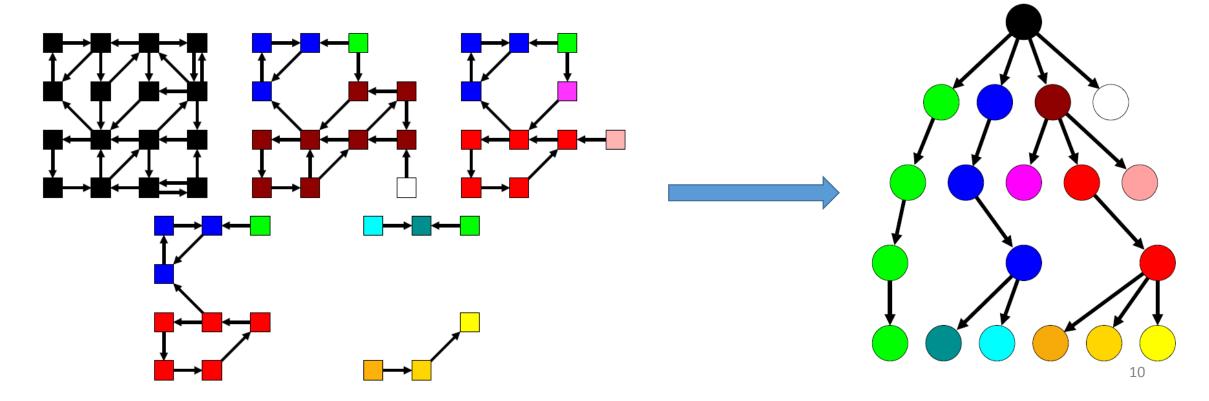
> The set of SCCs of a graph forms a partition

Stacking DAG

The SCCs of a stack of graphs forms a tree

Generalization of many known hierarchical representation: component tree, quasi-flat zone hierarchy (MST), watershed hierarchy



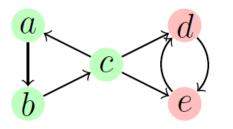


SCCs and DCCs

Relation between DCCs and SCCs

Two nodes x and y are in the same SCC iff they are the base points of the same DCC: $DCC_G(x) = DCC_G(y) \Leftrightarrow SCC_G(x) = SCC_G(y)$

The DAG induced by the SCCs: DAG_G (The SCCs + their adjacency relation) encodes the DCCs



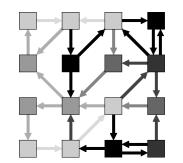
> DAG of SCCs $Y_1 \rightarrow Y_2$

 $SCC_G(a) = SCC_G(b) = SCC_G(c) = Y_1$ $SCC_G(d) = SCC_G(e) = Y_2$ $DCC_G(a) = \bigcup DCC_{DAG_G}(Y1) = Y_1 \cup Y_2$ $DCC_G(d) = \bigcup DCC_{DAG_G}(Y2) = Y_2$

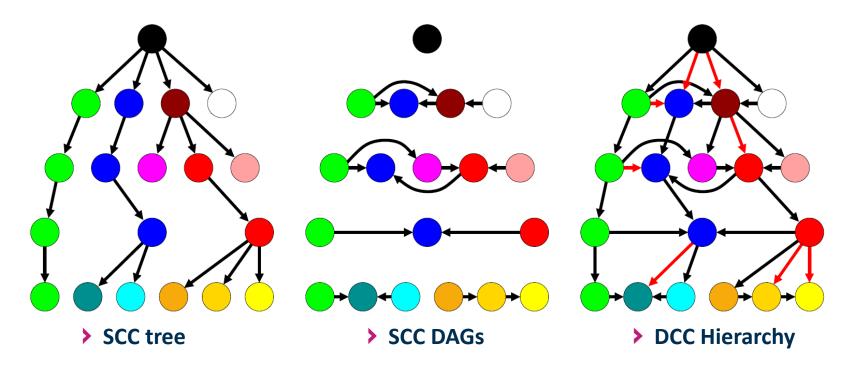
Stacking DAG

The DCCs hierarchy is the combination of

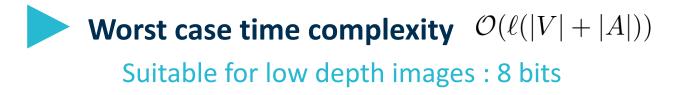
The tree of SCCs: encodes the inter-scale relations The DAGs of SCCs: encode the intra-scale relations



All the inter/intra scale relations among the DCCs is encoded



Algorithm 1: D-component hierarchy construction. > Number of levels $\mathcal{O}(\ell)$ **Input**: $S = \{\mathfrak{G}_0, \ldots, \mathfrak{G}_\ell\}$, a stack of graphs. **Output**: Label_i, S-component labeling for each i in $\{0, \ldots, \ell\}$. > Tarjan algorithm $\mathcal{O}(|V| + |A|)$ **Output**: Suc_i, array of adjacency lists for each i in $\{0, \ldots, \ell\}$. **Output**: PAR_i, parent relation for each i in $\{0, \ldots, \ell\}$. 1 for i from ℓ to 0 do $Label_i \leftarrow S$ -component labeling(\mathfrak{G}_i) — 2 $Suc_i \leftarrow adjacency \ lists(\mathfrak{G}_i, Label_i)$ 3 > Intra-scale adjacency $\mathcal{O}(|V| + |A|)$ if $i \neq \ell$ then 4 \square PAR_{*i*+1} \leftarrow **parent relation**(\mathfrak{G}_{i+1} , Label_{*i*+1}, Label_{*i*}) – 5 > Inter-scale adjacency $\mathcal{O}(|V|)$



Application – Retinal image

Retinal image segmentation

ESIEE

PARIS

Segmentation and characterization of blood vessels Diagnosis and evolution of several pathologies

Detection of the thin and faint vessels

High level of background noise Appear as disconnected groups of pixel at low scales Disappear at high scales

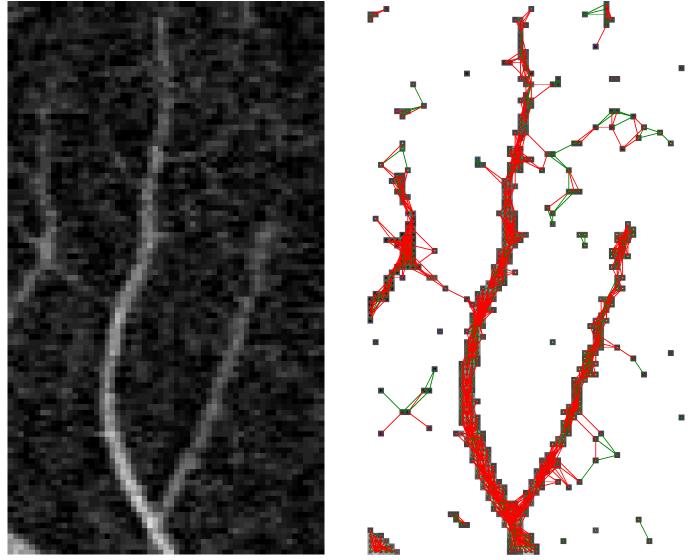
Application – Retinal image

Non local directed adjacency

4 adjacency K-brightest neighbors

Allows for:

Jumping over noise Weakly connecting noise

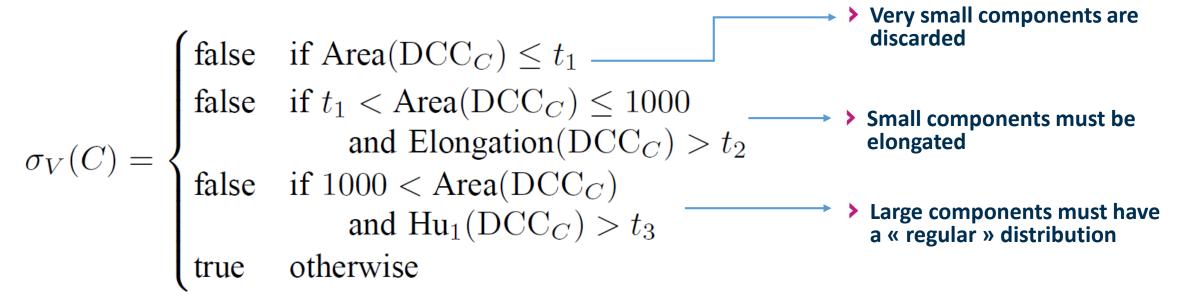


Application – Retinal image

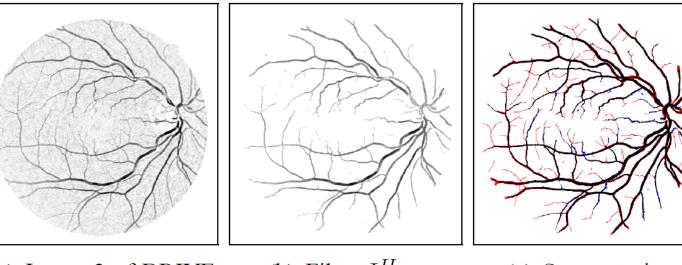
Filtering criterion

PARIS

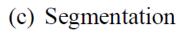
```
A node of the DCC graph is preserved if
```

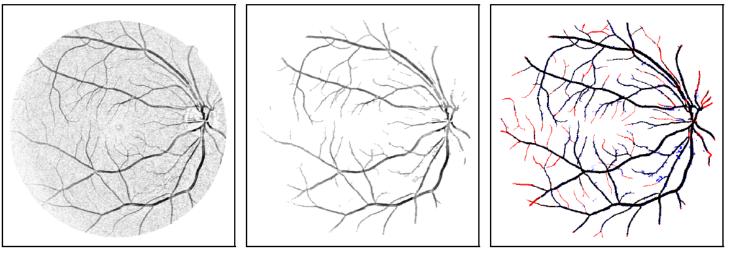


Application – Retinal image



(a) Image 2 of DRIVE





(d) Image 19 of DRIVE

(e) Filter $I_{\sigma_{RV}}^H$

(f) Segmentation

Application – Retinal image

Evaluation on DRIVE database

				& regularization
Method	TPR	TNR	Accuracy (σ)	► ► Non-local directed
2nd expert	0.7761	0.9725	0.9473 (0.0048)	adjacency with DCC
RNL D-components (15,0.2,1)	0.7079	0.9790	0.9442 (0.0063)	Non-local directed adjacency with SCC
NL D-components (15,0.2,1)	0.7046	0.9790	0.9439 (0.0064)	
NL S-components (30,0.15,1.3)	0.7024	0.9789	0.9434 (0.0070)	
NL symmetric (Max) (15,0.2,1.3)	0.6528	0.9828	0.9404 (0.0083)	Non-local symmetric
NL symmetric (Min) (15,0.15,1.35)	0.6980	0.9786	0.9425 (0.0067)	adjacency 1
Xu [65] (local symmetric)	0.6924	0.9779	0.9413 (0.0078)	Non-local symmetric
Mendonça [66]	0.7344	0.9764	0.9452 (0.0062)	adjacency 2
Staal [64]	0.7193	0.9773	0.9442 (0.0065)	
				└──→ ► Local symmetric

adjacency (« better »

(learning approach)

criterion)

State of the art

Non-local directed

adjacency with DCC

>

Application – Heart segmentation

Supervised segmentation of the myocardium

Select the largest DCCs that intersect the object marker but not the background marker

Directed gradient with modified weights

Indeed equivalent to directed shortest path forest by Miranda et al TIP 2014



(a) Original

(b) O: myocardium

(c) B: background

(d) Symmetric result

Application – Neurite filtering

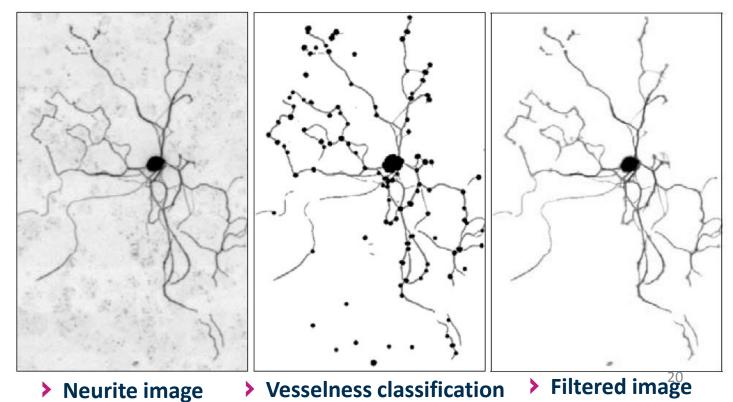
Segmentation of neurites in toxicology assays

Directed adjacency constructed from a vesselness classification (tube, blob, background) Tubes connect to blobs

Background connects to tubes and blobs

Filtering rule

A tube connect two structures Tubes have thin connections



Conclusion

Directed component hierarchy

Generalization of many known hierarchical image representations

Construction algorithm

Efficient in most cases

More efficient algorithms in preparation (support of 64bits images)

Demonstrated on several applications

State of the art performance with rather "simple" strategies

Python code online !

http://perso.esiee.fr/~perretb/dc-hierarchy.html